Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic Differentiation through Nuclear Factor-κB-Related Survival Pathway Down-Regulation

Por um escritor misterioso
Last updated 14 fevereiro 2025
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Arsenic trioxide (As2O3) is known to be toxic toward leukemia cells. In this study, we determined its effects on survival of human monocytic cells during macrophagic differentiation, an important biological process involved in the immune response. As2O3 used at clinically relevant pharmacological concentrations induced marked apoptosis of human blood monocytes during differentiation with either granulocyte-macrophage colony-stimulating factor or macrophage colony-stimulating factor. Apoptosis of monocytes was associated with increased caspase activities and decreased DNA binding of p65 nuclear factor-κB (NF-κB); like As2O3, the selective NF-κB inhibitor ( E )-3-[(4-methylphenyl)-sulfonyl]-2-propenenitrile (Bay 11-7082) strongly reduced survival of differentiating monocytes. The role of NF-κB in arsenic toxicity was also studied in promonocytic U937 cells during phorbol 12-myristate 13-acetate-induced macrophagic differentiation. In these cells, As2O3 first reduced DNA binding of p65 NF-κB and subsequently induced apoptosis. In addition, overexpression of the p65 NF-κB subunit, following stable infection with a p65 retroviral expressing vector, increased survival of As2O3-treated U937 cells. As2O3 specifically decreased protein levels of X-linked inhibitor of apoptosis protein and FLICE-inhibitory protein, two NF-κB-regulated genes in both U937 cells and blood monocytes during their differentiations. Finally, As2O3 was found to inhibit macrophagic differentiation of monocytic cells when used at cytotoxic concentrations; however, overexpression of the p65 NF-κB subunit in U937 cells reduced its effects toward differentiation. In contrast to monocytes, well differentiated macrophages were resistant to low concentrations of As2O3. Altogether, our study demonstrates that clinically relevant concentrations of As2O3 induced marked apoptosis of monocytic cells during in vitro macrophagic differentiation likely through inhibition of NF-κB-related survival pathways.
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
IJMS, Free Full-Text
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Arsenic trioxide-induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1-positive leukemia cells - ScienceDirect
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
The regulatory role and therapeutic application of pyroptosis in musculoskeletal diseases
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Frontiers Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Frontiers Reactive oxygen species mediated apoptotic death of colon cancer cells: therapeutic potential of plant derived alkaloids
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions - ScienceDirect
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Frontiers Macrophages in aseptic loosening: Characteristics, functions, and mechanisms
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Arsenic trioxide induces regulatory functions of plasmacytoid dendritic cells through interferon-α inhibition - ScienceDirect
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Frontiers A potential therapeutic approach for ulcerative colitis: targeted regulation of macrophage polarization through phytochemicals
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
IJMS, Free Full-Text
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Macrophage Reprogramming via Targeted ROS Scavenging and COX-2 Downregulation for Alleviating Inflammation
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic Differentiation through Nuclear Factor-κB-Related Survival Pathway Down- Regulation
Arsenic Trioxide Induces Apoptosis of Human Monocytes during Macrophagic  Differentiation through Nuclear Factor-κB-Related Survival Pathway  Down-Regulation
Arsenic trioxide induces regulatory functions of plasmacytoid dendritic cells through interferon-α inhibition - ScienceDirect

© 2014-2025 safaronline.com. All rights reserved.